Math Circles - Intro to Combinatorics - Winter 2024

Problem Set 2

February 14th, 2024

1. Find the expansion of $(x+4 y)^{3}$.
2. Find the expansion of $\left(x+\frac{1}{x}\right)^{5}$.
3. Find the coefficient of $x^{4} y^{2}$ in $(x+2 y)^{6}$.
4. Find the coefficient of x^{6} in $\left(x^{2}+1\right)^{5}$.
5. Find the coefficient of $x^{6} y^{3}$ in $\left(x^{3}-2 y\right)^{5}$
6. Expand $(x-\sqrt{2})^{4}$.
7. Pattern Investigation
(a) Write down any patterns you have noticed in the coefficients of $(x+y)^{n}$?
(b) How do the coefficients of $(x+y)^{n}$ compare to the coefficients of $(x+y)^{n+1}$?
(c) How many different terms does $(x+y)^{n}$ have for any n ? Why do you think it has this many terms?
(d) Can you explain how the number of terms changes as n changes? Can you write down an argument for why this is true?
